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By using asymptotic analysis, an eigensolution technique has been developed for 
predicting the flow of gas contained in a pie-shaped cylinder of finite length rotating 
rapidly about its vertex. This problem has application to a conventional cylindrical 
gas centrifuge with radial walls. Three different types of boundary layers exist in the 
flow : Ekman layers on the top and bottom, buoyancy layers on the radial walls, and 
a cylindrical ‘pancake’ layer on the outer wall of the cylinder. A single sixth-order 
partial differential equation is obtained for the axial velocity in the cylindrical layer, 
and the other layers provide matching conditions. The problem is formulated for 
no-slip and prescribed temperature conditions on the solid surfaces and for adiabatic 
no shear stress with zero pressure at  the inner free surface. Eigenvalues are computed 
for this problem and compared with those for the open cylinder, and solutions are 
presented for flows induced by mass throughput and by differential temperature 
conditions. 

1. Introduction 
The dynamics of rapidly rotating gases have been investigated by numerous 

authors with the primary application to gas centrifuges for the enrichment of 
fissionable isotopes of uranium. Such investigations have been reported by Sakurai 
& Matsuda (1974), Ratz (1978), Soubbaramayer (1979), and Wood & Morton (1980). 
In these investigations the gas centrifuge was treated as an open cylinder and the 
resulting flow field was considered to be axisymmetric. Matsuda & Nakagawa (1983) 
reported an investigation of a non-axisymmetric flow field which arises for a sectored 
cylinder with radial walls. These walls confine the gas to a pie-shaped region which 
is rotating about its apex (see figure 1). In their analysis, Matsuda & Nakagawa, who 
considered the case of an infinitely long cylinder in which the atmospheric scale 
height is of the order of the bowl radius, identified a new type of bounder7 layer, 
called a buoyancy layer, that exists along the radial walls and is of order Ex, where 
E is the Ekman number. 

In this paper we relax the restrictions imposed by Matsuda & Nakagawa and 
consider a pie-shaped cylinder of finite length in which the density scale height is 
small compared to the radius. A formal asymptotic method is used to develop an 
approximate model for the flow in this case of high rotational speed. This 
approximate model can be described in terms of a non-symmetric potential, x, by the 
following equation 
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FIGURE 1. Pie-shaped cylinder rotating about the vertex. 

where W and B are similarity parameters and x, 0,  and z are the radial, azimuthal and 
axial coordinates respectively. In the case of moderate rotational speed in which the 
atmospheric scale height is of order of the cylinder radius, the cross-derivative term 
may be neglected and the resulting model is the same as that obtained by Matsuda 
& Nakagawa. In the case of axial symmetry, the terms which exhibit azimuthal 
variation vanish and the model yields Onsager’s ‘pancake’ equation (see Wood & 
Morton 1980). (Lars Onsager coined the phrase ‘pancake’ to describe the high-speed 
approximation to flow in a centrifuge. He observed that in the limit of high rotation 
rate, the gas is compressed into a very thin layer near the wall, and hence the 
algebraic curvature terms may be neglected. The resulting ‘ atmosphere ’ within the 
centrifuge therefore is taken to be ‘flat as a pancake’.) 

To model accurately a rapidly rotating gas in a pie-shaped cylinder, however, the 
cross-derivative term is essential and furthermore its presence leads to significant 
difficulty in obtaining a solution. In the analysis presented herein, a Galerkin-type 
method is employed and the expansion functions are derived from the symmetric 
‘pancake ’ solution. The symmetric problem leads to a self-adjoint eigenvalue 
problem, a property which is not preserved in the non-symmetric case. However, i t  
has been shown (Babarsky & Wood 1986) that this non-self adjoint problem does 
admit eigenvalues and eigenfunctions. A comparison of the eigenvalues of the two 
problems confirms that the axial decay of the amplitude of flow variables is 
significantly magnified in the non-symmetric case. 

2. Linearized Navier-Stokes equations 
2.1. Reference solution 

Let ( r ,  8, z) denote cylindrical coordinates with the origin fixed at the bottom of the 
cylinder (which we take to be a right pie-shaped cylinder) on the axis of rotation. The 
z-axis lies along the axis of rotation, and the pie-shaped cylinder is restricted by the 
five walls: i9 = 0, 8 = 8,, r = a ,  z = 0 and z = zT. (Note that Oo, measured in radians, 
is taken to be order unity.) 

For a fluid rotating as a solid body about its axis with frequency 52 the radial, 
azimuthal, and axial velocity components are given by 

U = O ,  V = Q r ,  W = O .  
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with the pressure distribution governed by the hydrostatic equation 

25 1 

dP - = pQ2r, 
dr 

where p is the pressure and p is the density. 

in the cylinder are 
For a perfect gas a t  uniform temperature To the pressure and density distributions 

p = pW exp { -A2[1 - ( ~ / a ) ~ ] > ,  p = pw exp { -A2[1 - (r/a)21>, 

where A2 = (Qa)2/(2RT,) ,pw is the pressure at  the outer wall, pw is the density at the 
outer wall, a is the radius of the cylinder, and R is the specific gas constant. 

2.2. Linearized equations 

The equations of motion are made dimensionless by using Qa, p,, pw, To, and a for 
scaling the velocity, pressure, density, temperature, and lengths, respectively. 
Linearizing the steady (in the rotor-fixed frame) equations about isothermal solid- 
body rotation yields. 

(PO ru)r + P O  W O + ~ P ,  wz = 0, 

- r(2p0 w + p )  = - ( 1/2A2) pr  +E{Au- ( u / r 2 )  -zd2(ru), - 2v,/r}, 

2p, u = - ( 1 / 2 A 2 r )  p,+E{A(rv) - ( v / r )  + (1/3r) [wO+ur+ (7u/r )  +w,],}, 

(2.1) 

(2.2) 

(2.3) 

0 = - ( l /2A2)pz+E{Aw-$42ru,} ,  (2.4) 

(2.5) 

P = POT+P7 (2.6) 

0 = 2 r p ,  ru + EAT, 

where E = ,u/pwQa2, Pr = ,ucp/k,  r = A 2 P r ( y - l ) / y ,  y = cp /cv ,  

and po = p ,  = exp { - A2( 1 - r2 ) } .  

Here we have assumed that the specific heats, viscosity, and thermal conductivity 
are functions of temperature only. 

It should be noted that (2.1)-(2.6) differ from those derived by Schleiniger & Cole 
(1982) who also studied non-axisymmetric flow in a gas centrifuge. The differences 
derive from the nature of the disturbances they considered, which are non- 
axisymmetric but steady with respect to the laboratory frame. This is in 
contradistinction to the case at hand in which we consider flows which are steady 
in the rotating frame. 

3. Pancake theory 
3.1. The asymptotic limit S+ 0 

Following Schleineger & Cole (1982) we develop a high-speed limit approximation to 
obtain a non-axisymmetric pancake theory. We observe the dependence of the 
governing equations upon three parameters ; the speed parameter A2, the peripheral 
Ekman number E ,  and the compressibility parameter, f (which contains the factor 

For operating conditions characteristic of high-speed centrifuges we anticipate 
that A shall be large and E small. Thus, in the limit of high rotational speeds we may 
assume that A2 % 1 (note 1/2A2 is equal to the density scale height measured at the 

A2(Y- 1 ) / ? ) .  

9 FLM 239 
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outer radius) so that essentially all the gas is confined to a thin layer near the outer 
radial boundary. In this 'pancake layer' we anticipate a balance between 
stratification effects associated with high-speeds and viscous effects (radial diffusion). 
Taking 1/2A2 as the basic small parameter we let 

6 = 1/2A2+0, 

with the limit process characterized by 6 + 0, E + 0 and y + 1 (we shall be considering 
a polyatomic gas). 

In order to resolve stratification effects we keep (x, 8, z )  fixed where 

x = ( i -r) /6 .  
Now 

A 2( 1 - r2 )  = A2 ( 1 - r )  ( 1 + r )  = A2( 1 - r )  [2 - ( 1 - r ) ]  = z - 3x2. 
Thus, it can be shown that po = exp { -x} + O(6). In other words, x measures the 
distance from the outer wall of the cylinder in scale heights. 

For a polyatomic gas a characteristic feature of compressible motion in a strong 
centrifugal field is the coupling between the velocity and temperature which is due 
to the work done by the pressure as the fluid particle appreciably swells or shrinks 
during radial motion. Therefore, the parameter r plays a decisive role in high-speed 
gas centrifuge flows. 

It follows then that in order to maintain the balance of relevant forces in the 
pancake layer the following similarity parameters are obtained (see Wood & 
Babarsky 1987) : 

W = a 3 / E  and B =r, 
where these parameters indicate the rate at  which E +- 0 and y + 1 relative to 6 + 0. 

3.2. The equations of the pancake layer 

The resulting asymptotic expansion in the pancake layer far from the axial and 
azimuthal boundaries (where axial and azimuthal diffusion must be considered) may 
then be shown to be 

u ( r ,  0 , z ; A 2 , E ,  r )  = 6u*(z, 8 , z ; W , B ) +  ..., 
w(r ,8 , z ;A2 ,E , I ' )  = w*(z,O,z;W,B)+ ..., 
w(r,0,Z;A2,E,I')  = w * ( x , ~ , z ; W , B ) +  ..., 
p ( r , O , z ; A 2 , E , n  = p * ( x , e , z ; a , % ) +  ..., 
p ( r , 8 , z ; A 2 , E , r )  = p*(x ,8,z ;W,B)+ ..., 
T(r, 8, z ; A  ' , E , r )  = T*(x,8, z;W,B)+ ... . 

We note that only the radial velocity is asymptotically small. The resulting system 
constitutes the 'pancake ' approximation for non-axisymmetric flow in a gas 
centrifuge : 

- ~ p o ~ * ) z + P o ~ s * + p o ~ :  = 0, (3 .1)  

2pov*+p* = -p; ,  (3.2) 

2pou* = - p ; + ( l / 9 ) w ; z ,  (3.3) 

P: = ( l / a ) w ; z ,  (3.4) 
(3.5) 

p* = p * + p o T * .  (3 .6)  

2Bp0 U* = - ( l / W )  TZz, 
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We see from the above equations that in the non-axisymmetric pancake layer 
explicit 0-dependence is reflected in a three-dimensional mass conservation equation 
and in the presence of an azimuthal pressure gradient which counteracts the balance 
between the Coriolis force and azimuthal shear. 

Now following Maslen’s (1984) development, we define two quantities which are 
relevant to rotating compressible flows : 

ip* = T*-2v* and H* = T*+8v*.  

The approximate model may then be described by the following system of equations : 

(3.7) 

(3.8) 

(3.9) 
(3.10) 

(3.11) 

We shall now consider typical boundary conditions €or end-driven flows. A t  the 
rotor wall we require that the radial, axial, and azimuthal velocities and perturbation 
temperature vanish (i.e. u = w = v = T = 0). As noted above, in the asymptotic limit 
( S + O ) ,  to order S, u = 0. Hence, to the level of approximation of this analysis (all 
quantities represent highest-order terms in an asymptotic expansion in terms of S), 
the normal flow condition is identically satisfied. However, to be consistent with the 
usual interpretation of the O(1) problem as the first in an infinite sequence of 
problems consisting of partial differential equations and accompanying boundary 
condition, we shall impose the following conditions at the x = 0 boundary : 

u* = W* = V* = T* = 0, (3.12) 

which also implies ip* = 0. (3.13) 

At the inner boundary of the region over which the continuum equations are valid, 
x = xT, we impose the boundary conditions 

w,* = v,* = T* - - p * = o ,  (3.14) 

which also implies ipZ = 0 and where these conditions (note that the first three 
quantities represent lower-order terms in the expressions for the corresponding shear 
stresses and radial temperature gradient) are consistent with the class of conditions 
that are expected to prevail in this low-density regime (see Cooper & Morton 1988). 

The appropriate conditions to be imposed at  the axial and azimuthal boundaries 
are provided by matching with the solutions to the Ekman-layer and buoyancy-layer 
equations. 

4. The compressible Ekman layers 
For a rapidly rotating cylinder spinning about its vertical axis, boundary layers 

form on the horizontal flat surfaces. In  these regions of large velocity and 
temperature gradients the Coriolis forces and expansion-compression work term 
necessarily vary dramatically. Thus, in order to maintain the balance of these forces 
with the radial shear and pressure forces, axial diffusion (of momentum and heat) 
terms become significant. By focusing on the prevailing forces at work we may then 
formulate a tractable approximate problem. 

9-2 



254 H .  G .  Wood and R.  Babarsky 

Ekman layer 

Vacuum layer 

44- 
FIGURE 2. Flow field in a rapidly rotating pie-shaped cylinder, ( r ,  z)-plane. S = 1/(2A2) is the 

radial extent of the flow field. 

4.1. Ekman-layer scaling 
Let us consider the Ekman layer along the z = 0 wall. The analysis for the top end 
is similar. We anticipate the thickness of this layer to be of order Ei. Thus we seek 
an asymptotic expansion for our solution for which there are terms with argument 
(z,8, 5) fixed (note that the stretched radial variable will remain fixed) in the limit 
6 + 0, where 

g = Z/d. 
Thus, as expected, axial diffusion effects are restricted to regions of thickness 

smaller than that of the radial scale (see figure 2). 
I n  preserving a non-trivial system while balancing the predominate forces known 

to be acting in this region (i.e. axial diffusion terms balanced by pressure, Coriolis, 
transport and radial diffusion terms) we consider an asymptotic expansion near 
z = 0 of the form 

u ( r , 8 , z ; A 2 , E , r ) = S ( x , 8 , 5 ; W , B ) +  ..., 
v ( r , e , z ; A 2 , E , r )  = f i ( x , e , ~ ; a , ~ ) +  ..., 
w(r, 8 , z ; A 2 , E ,  
p ( r , 8 , z ; A 2 , E , r )  =fl(x,€',5;%',B)+ ..., 
p ( r , 8 , z ; A 2 , E , r )  =p"(x,O,C;B,B)+ ..., 
T(r,  8, z ; A ~ ,  E ,  r )  = ?(x, 8, g;  a,%) + . . ., 

= wB(x,8) +dtqz, 8, <;a, 9) + ..., 

where the terms with a tilde must decay like e-85 and the O( 1) term must be included 
in order to satisfy the condition w = WB(x,O) a t  z = 0. 

Substitution of this form into (2.1)-(2.6) leads to the following equations which are 
pertinent to the region 5 = O(1) : 

Note that 8 appears only parametrically in this system (i.e. the Ekman extension to  
the pancake layer is essentially axisymmetric). 
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4.2. Solution of the approximate equations 
At the bottom boundary the flow should satisfy boundary conditions of the form 

v = O ,  u=O, w = W B ,  T = T , ,  

where WB and TB represent functions of 6 and x. As {+ co matching conditions must 
be imposed) which precludes linear growth for the terms. From (4.3) and (4.5) we 
obtain 

which for no growth at [+ co yields 

(F  + Yv"), = 0, 

1 
Y 

!F+Yv" = TB or v" = - ( T B - F ) .  

Also from (4.14) we conclude that 

r? = p B ( x ,  6 ) ,  

where pB(x ,  6) will be determined from matching with the pancake expansion. 
After some analysis the solution in the Ekman layer may be shown to be 

!F = TB-Yv", = -pop+@ 

and @ = P B ( x ,  

where PE = [$'2p32 + Y)]i 

4.3. Conditions on the inner j b w  
The pancake and Ekman-layer expansions are matched by introducing an 
intermediate variable 

where 

2?/ = z*/r(4, 
4 4 r(S) 4 1, 

so that 2* = r]zq+o, 

(where &+ 0 and z7 is fixed). Using standard arguments (see Kerkorkian & Cole 1981) 
matching to first order is achieved provided 

p*(x, 67 O )  = pB(z7 6) ,  

1 
w*(x, 8,O) = WB(x, 6 ) ,  w*(x, 6,O) = -[ TB-p) ] . J 

Y + 2  Po 2 
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Moreover, in terms ofcp* and H* 
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cp* = (pB/pO), and H* = TB(x, 0).  

We may then obtain a matching condition on u* by combining (4.7) and (3.9) 
Note that the first condition follows from (3.8). 

29tp0(2 + q u*(x, e, 0) = - k),,, - 29?pB,. 

Also, the boundary functions are constrained to satisfy 

subject to the boundary conditions 

and T ~ ,  = k),, = p ,  = o a t  = xT, 

where conditions (3.12)-(3.14) have been imposed. 

5. Analysis of the buoyancy layer 
Borrowing a phrase from Matsuda & Nakagawa (1983) we shall call the boundary 

layers which form on the 0 = constant boundaries buoyancy layers. This is certainly 
an appropriate term, for since the boundary is vertical and normal to the azimuthal 
direction, the Coriolis terms do not play a significant part in establishing the balance 
of forces and motions in this layer. The flow is generated through the interaction 
between the temperature field and the radial velocity via the expansion-compression 
work term. This direct coupling between the velocity and temperature leads to a 
boundary-layer structure which vanishes when compressibility is neglected. 

5.1. Buoyancy-layer scaling 
We consider the 0 = 0 boundary. The analysis for 8 = Bo is similar. Order of 
magnitude arguments once a ain lead to  the conclusion that the thickness of the 
buoyancy layer is of order Eu (see figure 3). Thus our solution expansion includes 
terms with argument (x, 6 ,  z )  fixed in the limit a+ 0, where 

B 

6 = B/&. 

From various physical considerations (retaining a non-trivial continuity equation, 
balancing azimuthal diffusion terms with pressure and transport terms) we posit an 
asymptotic expansion near 0 = 0 of the following form: 

u ( r , B , z ; A 2 ,  E , r )  = t i (x ,S , z ;B ,Y)+ ..., 

W(r ,e ,Z ;A2 ,E , r )  = ?~(x,g,z;W,B)+ ..., 

p(r, B , z ; A 2 , E , r )  = p(x,E,z;9,%)+ ..., 

v ( r ,B , z ;A2 ,c ,T )  = dv(~,f;,z;B,Y)+ ..., 

p ( r ,  e , z ; A 2 , E ,  r )  = ?z(x, 6 ,  z ; W , % ) +  ..., 

T ( r , e , z ; A 2 , E , r ) =  T(x,~,z;~,%)+ .... 
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E‘ Buoyancy layer 

4 

FIQURE 3. Flow field in a rapidly rotating pie-shaped cylinder, ( r ,  @-plane. 

The appropriate equations in the region 6 = O(1) are then 

- (Po @ ) x  + Po *c = 0, 

- P = F x + ( l / W @ g ,  

Ft = 0, 

0 = a&, 
0 = 2Yp0@+(1/w)TEE, 

g j  = poT+p, 

where the axial coordinate appears only parametrically in this system. 
Observe that the determination of a is decoupled from the boundary-layer 

problem. Therefore, since solutions to the buoyancy-layer equations must decay 
exponentially as 6+00 (in order to achieve matching between the buoyancy and 
pancake layers), equation (5.4) implies that 

= 0, 

and hence that the flow in the buoyancy layer is two-dimensional. 
In addition, it also follows that 

= pB(x, z ) ,  

where p ,  is the pressure distribution at  the boundary. 

5.2. Solution of the approximate equations 
For the case of impermeable meridional walls the boundary conditions at 6 = 0 are 

a = a = u = o ,  T=T,. 

Substituting (5.6) into (5.2) and using (5.5) yields 

agg + 2w2p: Y a  = 0 

a = C e-pBc sin /3, 6,  
so that solutions, in which z and x appear as parameters only, may be written 

(5.7) 

where pB = (;9”:3)+. 
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Combining (5.2) and (5 .6) ,  where ti is given by (5.7), yields 
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Applying the boundary conditions a t  6 = $ we obtain the following expression for 
C(x, 2) : 

and hence 

and 

Also, combining (5.3) and (5.6) yields 

p = -Po  T+p&, 2 ) .  

(POU), = POV" 

From the continuity equation we have 

which yields 

where the appropriate condition on v a t  the boundary has been applied. 

define an intermediate variable 8, satisfying 
Next we consider matching of the buoyancy and pancake layers. To this end, we 

e* e =- 
I r1(W 

where 

so that matching as 

r1 z*=yz,+O and ~ = - z , + c o  4 
(where 6+0 and x7 remains fixed) is achieved to first order provided 

v* = 0, w* = 0, p* = p,(x, z ) ,  T* = k)z 
A matching condition on u* a t  the 8 = 0 boundary may then be obtained from 

(3.5) : 

29p0u*(x ,  0 , x )  = -- - , 
9? (9 Po 2x2 

where radial boundary conditions on the pancake variables require that 

p) =k) = 0  at x = o  
Po 222 Po 5 
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and where (3.10) implies that 
PB = h(x)* 

6. Axisymmetric solutions in the pancake layer 
For the axisymmetric case the pancake system may be reduced to 

- (Po u*), +PO w,* = 0, 

qgz = - 29p0(2 + 9) u*, 

(6.1) 

v* = @*/PO),, (6.2) 

(6.3) 

P: = ( l / W 4 z ,  (6.4) 

H2x = 0. (6-5) 

As the flow is now two-dimensional a formal stream function may then be defined : 

POU* = -$2, POW* = -$z, 

and by substituting these quantities in the governing system we obtain 

& = 2 m  + 9) $2 (6.6) 

and v,,* = - (1/W (e5(eZV+z)zz)z. (6.7) 

Equations (6.5), (6.6) and (6.7) govern the system and either v* or $ may be 
eliminated between the latter two. We eliminate p* in favour of + which yields 

(ez(ez$x)zz)zzz + 2@(2 + 9) $22 = 0. 

Xz = - 1 G . 9  

(ez(ezXzz)zz)zx + 2 w 2  + 9) x z z  = 0, 

Onsager adroitly introduced a master potential 

thereby obtaining, after integration in x, an equation 

(6.8) 

which for flows generated by prescribed conditions on the endcaps yields (through 
separation of variables) an eigenvalue problem in the radial variable (see subsequent 
discussion of homogeneous radial conditions). We seek solutions to (6.8) of the form 

(6.9) x(x, 4 = f(4 g(+ 

Inserting (6.9) into (6.8) leads to two equations: 

and 

(6.10) 

(6.11) 

where h2 is the separation constant. 

simplify notation by establishing the following definitions 
We shall frequently refer to various differential operators and we choose to 

L6f(4  = [e2(e2fzz)zz1zz, L, A x )  = [eZfzzlz7 

L4fW = [e3fzz1zz, L, f(4 = [ez(ezfzx)zzlz. 
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At the rotor wall the conditions on the radial, axial and azimuthal velocities and 
perturbation temperature can be conveniently expressed in terms of x (see Wood & 
Morton 1980), and hence the radial potential function f, as 

f X ( 0 )  = f x x ( O )  = W ( 0 )  = 0. (6.12) 

The appropriate conditions a t  x = xT, q~: = p* = w: = 0, may be expressed in 
terms of the potential function as: 

f(xT) = L4 f ( x T )  = f ( x T )  = O' (6.13) 

The boundary conditions defined above constitute adjoint boundary conditions for 
L, and the eigenvalue problem can be shown to be self-adjoint. I n  fact pancake 
theory was originated by Onsager based on a variational principle corresponding to  
the minimization of a dissipation function. 

The endwall boundary conditions are derived by matching to the Ekman layers. 
As shown in $4, with consistent Ekman-layer expansions, and for mass flow through 
the endcaps, in the asymptotic limit (6+0) to order d 

w*(x, 0) = Wo(x) and w*(x,  zo)  = Wz,(x), 

where Wo(x) and W,,(x) are prescribed conditions on the axial velocity a t  the endcaps 
(note that zo = zT/a). Following Wood & Morton (1980) who numerically generated 
the axisymmetric eigenfunctions {fk}, one may expand the boundary data in terms 
of the orthonormal set {fk(x)}, thereby establishing a solution by eigenvalue 
expansion. 

Solutions for all remaining flow variables may be obtained by solving (6.5) subject 
to appropriate boundary conditions (see Wood & Morton 1980 for details). 

7. Approximate solutions for the non-axisymmetric pancake layer 
7.1. Governing equations 

If we retain the non-axisymmetric terms in (3.7)-(3.11) the system corresponding to  
the pancake approximation may be obtained into a single sixth-order partial 
differential equation in terms of w*. To this end, from (3.8) and (3.10) we obtain 

v,* = (w:xl~Po)x.  (7.1) 

On eliminating p* from (3.9) by (3.10) and substituting (3.7) we get 

* 
v z x x x  = - 2 w ~ x x s - - g P o ( H * - ~ * ) * , - 2 W ( 2 + Y )  Pow:, 

v,*,., = 2 ~ : ~ ~ -  2a(2 + 3)  po w,*, - 2p0 [H,* - gwg*]o - 2 9 9 p 0  w:. 

= -2w:xxs- ~ ~ p , ~ B * , + ~ ~ P o ~ ~ : x l ~ P o ~ s s - ~ ~ ~ ~ + ~ ~  Pow: 

or (7.2) 

We may express [H,*-Qw,*] explicitly by combining (3.10) and (3.11), thereby 
eliminating the pressure terms. This yields 

[H,* - ~WZ]~. = 0. (7.3) 

We repeat here that although the range of the stretched coordinate x is typically 
taken to be infinite in extent, for convenience we shall consider the interval 
0 < x < xT where xT is chosen large enough to simulate the flow accurately as x + 00. 
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Equation (7.3) may then be integrated once, employing boundary conditions at  
the ‘top of the atmosphere’, (3.14). Carrying out this integration yields 

[H: - 9wB*Is = 0. 

Upon integrating again and applying boundary conditions at the radial wall 
(v* = w* = T* = 0 at x = 0) we find that 

H,* - 9,: = 0. (7.4) 

Finally, combining (7.1), (7.2), and (7.4) we obtain 

W z x e +  2wy2 + 9) w,*, + 2w29w,:, = 0. (7.5) 

It is interesting to note that one may take an alternative approach in deriving the 
governing equation for non-axisymmetric pancake theory. In doing so one obtains a 
single sixth-order partial differential equation in the perturbation temperature 

(7.6) 

Lkwzx) -- 2 9  

Po 2 5 x 2  Po 

(ex(exT~x,)xx)x + 2W2YTB:, - 2 9  e5T&, + 2@(2 + 9) Tg = 0, 

where if we neglect the cross-derivative term we obtain the equation describing flow 
in the sidewall Ei thermal layer as described by Matsuda & Nakagawa (1983). 

7.2. Derivation of a non-axisymmetric potential equation 
The problem defined by (7.5) is of sufficient complexity to preclude the application 
of elementary analytical methods (note that the corresponding differential operator 
is non-symmetric and contains both even and odd derivatives in 8 while solutions 
must satisfy homogeneous boundary conditions at the 6 = constant walls). In lieu of 
a direct numerical treatment we shall instead make use of previously obtained 
axisymmetric solutions (see Wood & Morton 1980) in generating solutions which 
satisfy (7.5). By analogy with the axisymmetric problem (see Wood & Morton 1980), 
we posit the existence of a non-axisymmetric potential function, x, such that 

w* = exxxx, 
which yields 

where this equation is obtained by integrating (7.5) twice with respect to x and the 
functions of integration have been set to zero with no loss of generality (keeping in 
mind our objective of predicting w*). Using (3.1)-(3.11) we may express (albeit in 
axial derivative form) all other variables in terms of x:  

( e ~ ( e ~ ~ ~ ~ ) ~ ~ ) ~ ~  + 2W29xee + 2.932 + 9) xzz - 2 9  exxxxe = 0, (7.7) 

and 
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where the conditions on the pancake variables at  the bottom endcap ( z  = 0) provide 
an integral representation for the entire flow field. 

For the case of a zero-temperature peripheral wall and zero pressure a t  the 'top of 
the atmosphere ' the radial boundary conditions on the physical variables 
((3.12)-(3.14)) may be shown to be compatible with (6.12) and (6.13) (see Wood & 
Babarsky 1987). Hence, we impose the following radial conditions on the non- 
symmetric potential x : 

Xx(0,e, 4 = xxz(0 ,e ,  2 )  = L,X(O, 0 , z )  = 0 

X ( X T ,  832) = L,X(XT, 09.4 = L , X ( X T ,  63.4 = 0. 

(7.8) 

(7.9) 

Now in order for the Ekman-layer analysis to be consistent with the case that the 
interior axial flow is described by (7.1) (and appropriate boundary conditions) we 
must determine conditions on the interior flow that may be expressed in terms of the 
axial velocity, w* (and hence 2). To this end we have, to order &, 

and 

and 

In  addition, we may use prescribed temperature data to obtain the following 
condition. From (7.4) we have 

H,* = gwg* = Y e 5 ~ x x s ,  

H * ( x , ~ , z , ) - H * ( x , B , o )  = 9 exXxxsdz. r which yields 

Applying the matching conditions (4.8) a t  the top and bottom boundaries we have 

rz. 
(7.10) 

J o  

where Tzo and To are the temperatures of the top and bottom endcap respectively. We 
see then that one may provide meaningful conditions a t  the top and bottom 
boundaries for the inner axial flow solution by prescribing either mass flow or the 
temperature differential between the bottom and top endcap. 

Analysis of the buoyancy layer implied that the inner flow axial velocity w* match 
the prescribed condition on the radial walls. This result may be immediately 
translated into homogeneous boundary conditions in the &variable, to be satisfied 
by the inner flow solution, i.e. w* = 0 at 0 = 0 and 0 = 8,. 

Thus for the azimuthal boundary condition we have 

xxx(z, 0 , d  = X X X ( X ,  eo,4 = 0. 

Consequently the inner axial flow problem has been completely specified. 
One may observe that the axisymmetric pancake operator (6.8) is embedded in 

(7.7). This suggests a possible approach whereby we seek an approximate solution (to 
the non-axisymmetric pancake equation) which exhibits the radial characteristics of 
the axisymmetric solution. We do so by assuming exponential behaviour in the axial 
variable and constructing a Galerkin-type solution to (7.7) in which we employ basis 
functions that contain the axisymmetric pancake eigenfunctions f,(x) as radial 
factors. 
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We proceed by seeking solutions to (7.7) of the form 

AX, e , z )  = ~ ( x ,  e) HM. (7.11) 

Inserting (7.11) into (7.7) leads to two problems - one for F and one for H .  These 
equations are 

- (ex(exF,,),,),, - 2g29Fee + 2 9  exFzzs = AF (7.12) 

and 2a"2+s)Hz,-/W = 0, (7.13) 

where h is the separation constant. Letting a2 = h/2W2(2+9) equation (7.12) 
becomes 

Hzz-a2H = 0, 

which has solution H = C ,  ePaL + C2 e". 
Next we turn our attention to (7.12). 

7.3 Eigenvalue problem 
As a means of obtaining a solution to the non-axisymmetric potential equation we 
consider the eigenvalue problem 

(7.14) 

for 0 < x < xT, 0 < 8 < 8, subject to the boundary conditions 

(7.15) 
J'(xT, 8) = (~xJ 'xx)xs(~T,  0)  = (exFxx)z(x,, 0)  = 0, 
F,(O, 6) = J',,(O, 6) = (ex(ex~,,),,),(O, 8 )  = 0, 

q x ,  0) = e,) = 0. 

In order to achieve continuity in the boundary conditions we have replaced those 
specified at the 8 = constant walls by homogeneous conditions in F. 

As discussed above, the problem described by (7.14) and (7.15) lends itself to 
solution by expansion in terms of the orthonormal functions 

A = ( 2 / ~ o ) v k p )  sin (mi ne/eoL 
where thefkl(x) are the orthonormal eigenfunctions associated with the axisymmetric 
pancake analysis. 

As the familiar energy-related arguments, which are useful in characterizing the 
solutions to self-adjoint, positive-bounded-below eigenvalue problems are not 
applicable to the problem defined by (7.14) and (7.15), it might be appropriate to 
raise questions regarding existence and uniqueness. These questions are considered 
in the context of operator theory in Babarsky & Wood (1986). The results yield the 
eigenvalues of (7.14) in conjunction with (7.15) are isolated and form a countable set. 
Moreover, the corresponding eigenfunctions (and higher-order eigenfunctions) form 
a complete set in the Hilbert space &' = P(0) where Sa = (O,x,) x (O,eo) and the 
scalar product is given by 

(u, V )  = [ c u v d x  do. 

Furthermore it is shown in Babarsky & Wood (1990) that one may construct a 
convergent I-Galerkin method (Chatelin 1983, pp. 17Ck177) solution to the partial 
differential equation (7.14) subject to the boundary conditions (7.143, for which the 
basis functions consists of the orthonormal set {q5t} = {(2/8,)tfk,(x) sin (mixO/O,)}. In  
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Diameter (m) 
Reference temperature (K)  
Wall pressure pw (torr) 
Wall speed (m/s) 
Corresponding speed parameter 2A2 
Ekman number (inverse of the wall Reynolds 

Corresponding value of W = a3/E 
Corresponding value of Y = r 
number) x lo7 

- 
900 
107 

2.36 

3.43 
3.48 

0.2 
320 
50 

1000 
132 

2.12 

2.02 
4.29 

~ 

1100 
160 

1.94 

1.25 
5.21 

TABLE 1 .  High-speed centrifuge parameters and corresponding values of W and Y for UP, 

other words, we may obtain a convergent sequence of approximate solutions by 
solving the N x N matrix eigenvalue problem 

EUN = hUN 

u N =  C arn$rn. 
m-1 

where uN, the approximate solutions, is assumed to be a linear combination: 
N 

For convenience we split f, into a symmetric part 

LF = - (ex(czFxx)xz)zx- 2B29F0, 

and a non-symmetric part 
BF = 2BexFxx,. 

Then the coefficients a, are determincd from the system of algebraic equations 

N 

{(E$k,$rn)ak-~8rnkakI  = 0, m = 1,2,  . . . , N  
k-1 

or expanding we have 

m 
a r n ( p m - h ) + C  a k ( B $ , , $ , ) = O ,  m =  l , . . - , N  (7.16) 

where prn is the ith eigenvalue of L (note that $m is the corresponding orthonormal 
eigenfunction). A characteristic value h = AN of (7.16) satisfies 

k-1 

det C(B$,, $J + (Pi - 4jI& = 0 

and will be taken as an approximate eigenvalue of (7 .14);  the corresponding 
approximate eigenvector uN is defined by the systcm (7.16) with A, substituted for 
A. 

7.4. Numerical calculations of eigenelements 
In  this section we wish to discuss results of numerical computations for the 
approximate eigenvalues and eigenfunctions of E. Since 9 and 9 appear explicitly in 
the expression for E, the eigenelements will clearly depend on these values. To 
provide a flavour of the range of parameters within which this analysis is valid (recall 
that  W x 9 x 1 defines non-axisymmetric pancake flow), we shall calculate values of 
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W and 9 for a centrifuge containing UF, which is spinning at several different 
peripheral speeds. The numerical values associated with a representative geometry 
and set of operating conditions, along with the corresponding magnitudes of W and 
9, are given in table 1. The former are taken from the GSR Rome Machine Model (see 
Scuricini 1979) centrifuge parameters, with the only difference being the wall 
pressure, which is one half the minimum value given for the Rome model. We 
proceed with calculations for the case of Vperiph = 1000 m/s (along with the operating 
parameters listed in table 1). This corresponds to 9 = 2.02 and 9 = 4.29. In 
addition, we take 8,, = fn and xT = 14.95, where the latter choice is consistent with 
the criterion for choosing an inner boundary location as developed by Cooper & 
Morton (1988). These authors' analysis, in which wave motions in a rotating gas were 
considered, demonstrated the insensitivity of solutions to the location of the inner 
boundary provided xT > 12. 

As explained above, we obtain approximate solutions by solving the N x N matrix 
eigenvalue problem 

N 

am(p.m-A)+ c ak(B#]c, $m) = 0, = 
k-1 

The matrix elements (Bgl,, g l m )  are easily obtained by numerical integration utilizing 
the axisymmetric pancake eigenfunctions f k ( x )  and second derivatives fk,,(x) which 
were generated by Wood & Morton (1980). Although these solutions were obtained 
for an infinite radial interval the error in using these functions is of order e-14.96. 

Calculating the eigenvalues and eigenfunctions of this matrix can be accomplished 
via a series of well-known EISPACK routines which apply similarity transforms to 
balance, to reduce to Hessenberg form, and finally to triangularize the matrix. 

The result of these eigenvalue calculations are described in detail by Babarsky & 
Wood (1990). In  addition to obtaining the first 40 eigenvalue-eigenfunction pairs for z, the question of the effect of radial (8 = const.) walls upon the strength of 
end-driven flows in a gas centrifuge is addressed by considering the notion of 
decay length. Now, owing to the completeness of the eigenfunctions, the general 
motion within the centrifuge corresponds to a sum of solutions of (7.14). Letting 
A,  and F, be corresponding eigenvalue-eigenfunction pairs and recalling that 
A,  = a: 2g2(2 + 9) we can write the general solution for x as 

m 

x = C. (A,F,(x, /3)e-a~L+B,F,(x, 8)e-an(zo-z)). 

Physically 1/Re (a,) represents the decay length of the nth mode. That is, if 
A ,  = 1 and all other A and B are zero, then the kth mode will be reduced in amplitude 
by a factor of l/e in a distance 1/Re (ak). Thus the eigenfunction associated with the 
lowest value of Re (a,) corresponds to the kind of motion which extends farthest up 
(or down) the cylinder. 

For the lower modes results suggest that the non-axisymmetric eigenfunctions 
may be closely identified with a particular two-dimensional, symmetric eigen- 
function, glj (see Babarsky & Wood 1990). In other words, in the Nth approximate 
Galerkin eigensolution associated with a given (say nth) mode 

n-1 

N 

(i.e. F" = 2 af gli 
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a;' a;' 
Mode (axisymmetric) (non-axisymmetric) 

1 2.971 7 0.38223 
2 0.47439 0.299 17 
3 0.16147 0.14891 
4 0.073 75 0.07242 

TABLE 2. Decay lengths for the first four axisymmetric modes and corresponding 
non-axisymmetric modes 

there is a specific j such that 

Hence a comparison of the intensification (or diminishment) of the tendency of the 
motion within the centrifuge to  decay with the introduction of radial walls is most 
appropriately based on the comparison between the decay lengths of the non- 
axisymmetric mode corresponding to the symmetric eigenfunction (2 /8 , ) i fk(z )  sin 
8x/8, and that of the axisymmetric mode associated with fk(x). In  going from one 
dimension to two dimensions the characteristic motion associated with the 
eigenfunction fk(x) has in a sense been distributed over a countably infinite number 
of possible motions (i.e. (2/8,)$fk(z) sin (mxe/O,), m = 1,2,  . ..) with the most 
important motion corresponding to  the basic mode, fk(x) sin ?r8/8,. 

A comparison (on the basis described above) of the decay lengths corresponding to  
the first four modes is presented in table 2 (the axisymmetric values are taken from 
Wood & Morton 1980). The motion associated with the fundamental mode (i.e. that 
mode characterized by the longest decay length) is the most important kind of 
motion for the action of a high-speed centrifuge. Thus, we see that, for the 
parameters chosen, the presence of radial walls significantly impedes the resulting 
non-axisymmetric motions. I n  other words, for the same set of parameters, 
axisymmetric motions penetrate significantly farther into the interior of the cylinder 
than the corresponding non-axisymmetric motions. As for the higher modes, the 
corresponding eigenfunctions are characterized by increasingly rapid oscillations in 
the radial coordinate and are associated with motions which are, to a greater degree, 
influenced (i.e. retarded) by the radial boundaries. Consequently, they are less 
affected by the presence of the 0 = constant walls. This tendency is reflected for these 
higher modes in the increasingly close agreement between the decay lengths for the 
axisymmetric and non-axisymmetric cases. 

7.5. Connection with the non-axisymmetric pancake solution 
We now demonstrate that  a solution to the potential equation (7.7), i.e. 

where F(z ,  0 )  is an eigenfunction of (7.14) (i.e. a limiting Galerkin solution) and H ( z )  
is a solution to (7.13):satisfies the non-axisymmetric pancake problem, as defined by 
(7.5) 
' Now, in Babarsky (1986) the homogeneous radial conditions are shown to be 
satisfied in the sense of the natural norm of pZ(O, 0,) and the homogeneous azimuthal 
conditions are shown to be satisfied in the sense of the natural norm of Y ( 0 ,  xT) by 
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the limiting Galerkin solution. We next consider the matching conditions. It has been 
shown in Babarsky & Wood (1986) that the set of eigenfunctions (and higher-order 
eigenfunctions if they exist) are complete in S ; that is, the class of all finite linear 
combinations of them are dense in S. Thus we may express conditions that the flow 
is described by the non-axisymmetric potential model as follows : given any e > 0, for 
N sufficiently large we can find coefficients A ,  and B, (n = 1 ,2 ,3 ,  ...,N) in the 
approximate expression for the general solution x ,  i.e. 

and 

(7.17) 

(7.18) 

(7.19) 

where, if mass flow data are prescribed, 

g1(x,  8) = 1 l p o  Wo(x”, 6) dx“ dx’ and g 2 ( x ,  0 )  = 1 I po Wzo (x” , 0) dx” dx’ , 

and if temperature data are prescribed, 

where a(z ,  0) = p 1 [Tzo(z”, el) - To(x”, 6) ]  d6’dz” dz’. 
0 0  

For computational purposes, however, we shall consider consistent approxi- 
mations for the matching equations. Substituting (7.17) for x in these equations 
yields for the mass flow case 

m m 

U m 

and for the temperature differential case 

It is in this sense that the end conditions are satisfied. This completes the 
consideration of the boundary conditions. 
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FIQURE 4. Boundary condition for axial mass flux (values range from -0.5 t o  1.0). 

FIGURE 5. Axial mass flux for flow driven by an axial mass flux through endcaps at : (a) &zo (values 
range from -0.322 to 0.656) ; ( b )  &, (values range from -0.0345 to 0.0714789) ; (c) 4zo (values range 
from -0.000508 to 0.000 145). 

8. Results 
I n  this section we present results of numerical computations for two simple choices 

of boundary data. In  addition to the parameter values indicated above, we take 
z0 = 2.5. 

Approximate solutions were obtained by truncating the infinite series (7 .17)  after 40 
terms and evaluating the left-hand sides of (7.20) and (7.21) or (7.22) at  a number of 
points in the (x, 8)-plane. (These calculations were performed using a mesh of 24 radial 
grid points and 15 azimuthal grid points.) The coefficients A ,  and B,, n = 1,2,3,  ..., 
40, can then be determined by linear least squares. It should be noted that in both 
cases treated below the mass conservation constraint gives rise to  axial flows which 
are symmetric about the midplane ( z  = +zo), hence, A ,  and B, are equal for each n. 

I n  the first case considered, the countercurrent flow is induced by introducing 
and removing mass through the endcaps. In  particular, on the bottom endcap a 
uniform mass flux of unit amplitude is introduced in the region (0.75 < x < 1.25, 
0.458, d 8 d 0.558, and a uniform mass flux of amplitude 0.5 is removed in the 
region (2.5 < x < 3.5; 0.45 < 0 < 0.558,). On the top endcap, symmetric conditions 
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FIQURE 6. Temperature differential condition (values range from - 1.0 to 1 .O). 

FIQIJRE 7. Axial mass flux for flow driven by temperature boundary conditions at: (a) &z0 (values 
range from 0.0396 to 0.04); ( b )  &zo (values range from -0.OOO 175 t o  0.0019) ; (c) $z0 (values range 
from -0.000055 to 0.000087) ; ( d )  $zo (values range from -0.000004 to 0.0000072); (e) tio (values 
range from -0.OOO00154 to 0.00000266). 

are imposed with mass removed for (0.75 < x < 1.25, 0.450, < 0 < 0.558,) and 
introduced for (2.50 < x < 3.50, 0.458, < 8 < 0.558,). The end conditions are 
depicted in figure 4. 

The countercurrent flow is determined by the axial mass flux which is shown in 
figure 5(u-c) as a function of 8 and x at the axial locations of &,, iz,, and, $z0 
respectively. 

A second case has been considered in which the countercurrent flow is induced by 
a temperature differential between the two axial boundaries. As an example, on the 
top endcap, we impose a perturbation temperature distribution of unit magnitude in 
the region (0.75 < x < 1.25, 0.58, < 8 < 0.558,) and a temperature deficit of 0.5 in 
the region (2.5 < x < 3.5,0.58, < 0 < 0.558,). The temperature profile on the bottom 
endcap is the reflection of that described above with respect to the midplane 8 = Po. 
However, we note that axial asymmetries which arise from the discrepancy between 
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prescribed temperature conditions a t  the top and bottom endcaps are mediated 
through the Ekman layers, the inner axial flow being driven solely by the 
temperature differential profile. This differential condition is shown in figure 6. 

Similar results are presented for this case as were presented for the mass-driven 
case, Figure 7(a-e) shows the axial mass flux as a function of x and 0 at the axial 
locations &z0, i z o ,  izo,  Cz0, and +zo, respectively. 

In  viewing these figures, one should keep in mind that although the geometry 
shown is rectangular this simplification results from the neglect of curvature in the 
high-speed limit being considered. A physically realistic depiction of the flow 
geometry would not only exhibit curvature but would also reflect the exceedingly 
small ratio x,/B0a where a is the radius of the centrifuge. 

As regards the mass-driven and temperature-driven profiles we see that their 
evolution (in z )  exhibits the tendency of the flow to decay to the fundamental 
eigenmode (that eigenfunction corresponding to the lowest value of Re (an)). This 
property of the axial mass flows is further illustrated by the relative strength of the 
flow associated with the mass flow boundary condition which excites the fundamental 
mode to a greater degree than does the thermal condition. 

9. Conclusions 
A solution technique has been developed for analysing end-driven, compressible 

flow in a rapidly rotating, pie-shaped, cylinder. Approximate solutions have been 
obtained for the case of non-homogeneous end conditions corresponding to mass 
throughput and a temperature differential between endcaps. 

Two main conclusions may be drawn concerning the effects of radial walls on the 
countercurrent flow. The first follows immediately from the fact that the buoyancy- 
layer contribution for w, the axial velocity, vanishes. This implies that the axial 
velocity cannot decay sharply near the radial walls, but must fall off gradually, 
thereby significantly reducing the axial mass flux compared to the open-cylinder 
case. Secondly, the decay length of the fundamental mode (i/al) is significantly 
shorter than that of the corresponding axisymmetric case. Consequently, end-driven 
flows must decay quite rapidly with distance away from the axial boundary. 
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